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1 Introduction

The solar industry has introduced us to a green and clean source of energy, which in fact is on a
42% average growth spree. The adaptation of this clean resource is on the rise, and we intend to
use semantic segmentation techniques to understand solar panel coverage from aerial view images.
Whereas we propose a fast and efficient method of detecting solar panels in aerial images (taken
from satellite, drones, UAV’s or any aerial device) using deep learning methods, which will help us
study more about the production and coverage of solar panels in an area/city of interest. This data is
highly valuable as companies in the solar space (old or new), can use our research to better target
customers, urban planners, open new maintenance workshops, run targeted ad-campaigns, plan for
company expansion, etc. Traditional methods of detecting solar panels in highly congregated houses
or buildings do not perform well, due to objects that closely resemble a solar panel, and other noise
that is present.

Following the success of transformers in natural language processing (NLP) and the introduction
of vision Transformer (ViT) [10] for image classification, there has been a surge in the use of
transformers for vision tasks with great results. For the task of semantic segmentation in particular,
visual transformers have achieved great performance on multiple benchmark datasets compared
with state of the art CNNs. In this work, we perform a comparative study of the performance of
state-of-the-art CNN models and transformer vision models applied to semantic segmentation of solar
panel imagery. For CNN, we implement U-Net and DeepLabv3+ based models. We will compare
their performance to that of transformer based methods SegFormer and DPT.

The SegFormer framework proposed in [11] combines a hierarchical transformers encoder with a
lightweight decoder with only four MLP layers. It has achieved state of the art results on ADE20K.
DPT [2] is a new segmentation model released by Intel in 2021. In DPT ViTs are used instead of
CNNs giving more consistent and detailed predictions.

2 Related Work

Traditional algorithm approaches were used in [1] on a small dataset of 50 images and supervised
classifiers with manual feature extraction. Modern techniques with CNNs have improved a lot
over the traditional image recognition approaches on aerial detection problems [3][4]. In [5] the
researchers proposed a method to use CNN based PV detector that performed exceptionally well on
single PV cells but faced difficulty in recognizing large PV arrays. To overcome this [6], used CNN
network SegNet which substantially outperformed the results of [5] for solar PV arrays. In [7] the
researchers employed transfer learning of EfficientNet-B7 for solar panel detection and passed it to
U-Net for mask prediction. The work in [5] uses a pretrained VGG net classifier with 6 convolutional
and 2 fully connected layers. A post processing method was applied to connect pixels with indirect
contact. But since VGG being a classification model, it was difficult to acquire exact shape of the
solar panels. Many state of the art deep learning models like U-Net, Deeplab v3+, Dilated net,
Dilated ResNet, have been proposed in [8].



Figure 1: DPT architecture overview

3 Method

To test the performance of transformers for semantic segmentation of Solar PV imagery we performed
experiments with two transformer architectures, DPT and SegFormer.

3.1 DPT Transformer

This section shows the experiments performed on Dense Vision transformer (DPT) [2], which
leverages a usual encoder-decoder architecture but instead of a CNN, Vision transformers [10] were
used as a backbone. In DPT the input image is divided into N overlapping patches of fixed size
(16x16). The patches are flattened and turned into embeddings using linear projection. Positional
embeddings are concatenated to these embeddings to retain spatial information between tokens.
The result of applying applying embedding process to image of shape HxW is Np tokens t0 =
{t00, ..., t0Np

}, t0n ∈ RD, where Np = H ×W/P 2 and D is the dimension of each token.

The Np tokens are passed to Convolution Decoder, where they get assembled at different resolutions
which later are progressively fused into final prediction. To assemble the tokens the authors proposed

ReassembleD̂s (t) = (Resamples ◦ Concatenate ◦ Read)(t),

where s is the recovered representation’s output size ratio in terms of the input picture, and D denotes
the output feature dimension.

The Read method is used to map the Np + 1 tokens into Np tokens, since ViT comes from NLP
background, it has an extra class token along with the Np tokens from the image used in classification.
Since the class token doesn’t make much sense in segmentation, the authors proposed three different
Read methods to handle it.

The use of Readprojection by the authors yielded better performance as compared to using Readignore
and Readadd. Therefore, we used Readprojection for our experiments.

Readproj(t) = {mlp(cat(t1, t0)), · · · ,
mlp(cat(tNp

, t0))}
(1)
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Figure 2: Overview of the SegFormer Model. The encoder consists of four transformer blocks.
Each transformer block as multiple layers of Efficient Self Attention and Mix-FFN modules. The All-
MLP decoder fuses the multi-level features to produce a segmentation mask. The feature dimensions
shown correspond to SegFormer size MiT-B3 which was used.

which concatenates the class token and passes to multi layer perceptron. After the Read block, the
Np tokens are reshaped into image like representations using Concatenate block.

Concatenate : RNp×D → R
H
p ×

W
p ×D. (2)

And finally these representations are scaled to size H
s ×

W
s in the Resamples block. Resample

involves a 1×1 convolution followed by a 3×3 strided convolution/transpose convolution for upsam-
pling/downsampling respectively.

The scaled representations at successive stages are joined using refinenet’s fusion algorithm [14], and
each fusion stage is upsampled by a factor of two. Figure 1 shows an overview of the Dense Vision
transformer architecture.

3.2 SegFormer

Xie et al. [11] proposed the SegFormer transformer model as a variant of ViT optimized for semantic
segmentation. The input image is split into 4×4 patches which are then organized into a linear
sequence that is used as input to the encoder. Figure 2 shows an overview of the SegFormer
architecture.

3.2.1 Mix Transformer Encoder (MiT)

SegFormer introduces a hierarchical transformer encoder which they call Mix Transformer (MiT). It
consists of 4 transformer blocks, each of which generates features at a different level of resolution.
Given an input image with resolution H ×W × 3, patch merging is performed at each transformer
block to obtain a hierarchical feature map with a resolution of H

2i+1 × W
2i+1 ×Ci, where i ∈ {1, 2, 3, 4}

is the block number.

A single transformer block consists of two transformer encoder layers followed by overlap patch
merging. The transformer encoder layer stacks an Efficient Self-Attention layer followed by a
Mix-FFN layer.

Efficient Self-Attention. The original multi-head self attention introduces three heads, Q,K, V ,
with dimension N ×C, where N = H ×W is the length of the sequence and attention is formulated
as:

Attention(Q,K, V ) = Softmax(
QK>√
dhead

)V. (3)
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Efficient self-attention uses a sequence reduction process [13] to reduce the length of the sequence as
follows:

K̂ = Reshape(
N

R
,C ·R)(K)

K = Linear(C ·R,C)(K̂),

(4)

where R is a reduction ratio, K is the sequence to be reduced. The new K has dimensions N
R × C.

This reduces the complexity of the self-attention layer by R.

Mix-FFN. Different from a feed-forward network (FFN), a Mix-FNN introduces a 3× 3 convolution
to encode positional information. The Mix-FFN layer is formulated as:

xout = MLP(GELU(Conv3×3( MLP(xin)))) + xin, (5)

where xin is the feature from the self-attention module.

3.2.2 MLP Decoder

The SegFormer decoder consists of four main steps which can be formulated as:

F̂i = ReLU(Norm(Linear(Ci, C)))(Fi),∀i

F̂i = Upsample(
W

4
× W

4
)(F̂i),∀i

F = ReLU(Norm(Linear(4C,C)))(Concat(F̂i)),∀i
M = Linear(C,Ncls)(F ),

(6)

where Fi are the multilevel features from the MiT encoder, Linear(Cin, Cout)(·) refers to a linear
layer with Cin input and Cout output dimension, and Ncls is the number of classes.

3.2.3 Local Emphasis

Following the work in [16], we experimented with changing SegFormer’s simple decoder. The main
idea is to refocus the attention weights obtained from the encoder feature maps and emphasize local
features in the decoder. To this end, we replace the MLP layer that transforms each feature map with
a convolution operation and activation function. The new decoder is defined as

F̂i = ReLU(Norm(Conv(Ci, C)))(Fi),∀i
F̂i = ReLU(Norm(Conv(C,C)))(Fi),∀i

F̂i = Upsample(
W

4
× W

4
)(F̂i),∀i

F = ReLU(Norm(Linear(4C,C)))(Concat(F̂i)),∀i
M = Linear(C,Ncls)(F ).

(7)

4 Experiments

4.1 Dataset And Evaluation Metrics

All experiments were conducted using the dataset introduced in [8]. This dataset consists of satellite
and aerial imagery collected in Jiangsu Province, China. The PV samples were collected at three
different spatial resolutions: 0.8m resolution from satellite imagery, 0.3m resolution from aerial
photography and 0.1m resolution from Unmanned Aerial Vehicles (UAV) orthophotos. Each training
sample was manually annotated to generate segmentation masks to be used as ground truth during
training. Figure 3 shows the number of images as well as some sample images in each resolution. We
split the dataset into 60% training, 20% validation and 20% test.

We evaluate semantic segmentation performance using mean Intersection over Union (mIoU). As a
loss function we use Dice Loss[12].

Mean Intersection over Union (mIoU). For an individual class, Intersection over Union (IoU)
measures the percent overlap between the target mask and the predicted output. At the pixel level,
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Spatial Resolution Number Size

0.8m 763 1024 x 1024
0.3m 2,308 1024 x 1024
0.1m 645 256 x 256

Total 3,716

Figure 3: Summary of the PV Dataset

IoU is defined as the number of true positives (TP) divided by the sum of true positives (TP), false
positives (FP) and false negatives (FN).

IoU =
Area of Overlap
Area of Union

IoU =
TP

TP + FP + FN
(8)

Dice Loss. Dice Loss is based on the dice coefficient which is a statistic used to measure the similarity
between two samples. It was first proposed in [12] and it is defined as:

DL = 1− 2 ∗
∑
ptrue ∗ ppred + ε∑

p2true +
∑
p2pred + ε

(9)

where ptrue is the binary target and ppred is the predicted binary segmentation and ε is a small number
added to prevent errors in edge cases. Dice loss can be particularly helpful when we have highly
imbalanced classes where the background pixels are a lot more prominent than the foreground pixels
as is often the case with solar panel segmentation data.

4.2 Implementation Details.

For implementation of SegFormer and DeepLab v3+ we used the mmsegmentation1 codebase. In the
training pipeline we used random crop of 512 x 512, random flip, and photometric distortions as data
augmentation operations. All three image resolution groups were used together for training. In the
case of the 0.1 resolution images that are smaller than 512 x 512, padding is used. For UNet we used
the segmentation_models_pytorch 2 codebase. The results for DPT of PV01 are trained solely on
PV01 instead of all resolutions to compare with the results in [8]. We used the AdamW optimizer
and polynomial learning rate policy.

4.3 Baseline CNN Models

We compare the performance of the transformer models to two of the best performing models that
have been used on this dataset[8].

UNet. We used a UNet with ResNet50 as the backbone and encoder weights pretrained on ImageNet.
Our model has achieved almost comparable results to the best model proposed in the research paper
[8]. The authors achieve an IoU score of 84.5 using DeepLab v3+ on the PV08_ Ground data. Our

1https://github.com/open-mmlab/mmsegmentation
2https://github.com/qubvel/mmsegmentation_models.pytorch

5



model achieves 92.5 IoU score at 15th epoch using the U-Net Segmentation model trained on the
PV08_Ground data. Additionally, we track the dice loss during the training performance to improve
the model performance. Our U-Net Segmentation model achieves 0.163 dice loss, and this metric can
serve as a baseline for other researchers.

Table 1: Overall test results

Model mIoU Loss

U-Net 86.24 0.16
DeepLabv3+ 92.7 0.17
DPT 92.1 0.06 *
SegFormer 93.9 0.16

Table 2: Results by spatial resolution

Model 0.8m 0.3m 0.1m

DeepLabv3+ 88.4 93.2 90.6
DPT 88.03 93.3 95.1
SegFormer 92.2 94.1 94.9

* Dice loss did not perform well on DPT so cross entropy loss was used.
** U-Net does not perform well on lower resolution images and is omitted in the comparison by
resolution.

DeepLab v3+. The best results that have been previously reported on the dataset[8] we obtained
using DeepLab v3+. We used a ResNet-101 as the backbone with dilation set to (1, 1, 1, 2) and
strides set to (1, 2, 2, 1). The decoder is a depthwise separable ASPP head with dilations set to (1, 6,
12, 18). We initialize with weights pretrained on Cityscapes[17] and train for 2000 iterations. The
model achieves dice loss of 0.18 and overall mIoU of 92.9. As shown in table 2, there is significant
difference in performance between different resolutions. DeepLab v3+ performs much better on
0.3m resolution images which were more abundant in the dataset. The 0.8m resolution group gets
the lowest mIoU of 88.4 which are the images with the highest resolution where the pixel areas with
PV panels is much smaller than the pixel areas without them. This suggests that, for this dataset,
DeepLab v3+ may be biased toward the background class and it is not able to accurately detect the
finer details in high resolution images. This problem is evident in the qualitative results shown in
figure 4 where DeepLab v3+ works really well for the 0.1m and 0.3m resolution images, but struggles
to properly identify the PV panel in the 0.8m resolution image.

4.4 Transformer Models Implementation and Results

DPT. We used ViT-Base as the transformers in DPT which gave similar results compared to the
baseline models. We used layers 2, 5, 8, 11 to reassemble the tokens and a patch size of 16. We
attained an mIoU of 92.14 and a Cross entropy loss of 0.06. DiceLoss, like other models, didn’t
achieve positive results with DPT. Interestingly, fine-tuning with a train-validation-test split of 5%
5% 90% gave nearly similar results when compared with other models. The transformer encoder
does a great job in capturing fine-grain details compared to the CNN models in [8].

SegFormer. We used the MiT-B3 version of SegFormer where the number of layers for each
transformer stage is set to (3,4,18,3). We set the channel dimension of the decoder to 256. We do
pretrained weight initialization using Cityscapes and train for 2000 iterations. SegFormer performs
best out of all models considered achieving mIoU of 93.9 and dice loss of 17. It also performs
exceptionally well for each individual image resolution group as shown in table 2. This is evidence
that the hierarchical transformer encoder does a great job of capturing relevant features at different
levels of resolution, especially when compared to the results of DeepLab v3+.

SegFormer + Local Emphasis. We tested SegFormer with several variations of the Local Emphasis
decoder. We tried same convolutions with (K=3,P=1,S=1) and (K=5,P=2,S=1). We also experimented
with the stepwise feature aggregation strategy proposed in [16] where, instead of concatenating
all four feature maps at once, we first concatenate two of them and combine the result with each
remaining feature map one at a time applying a linear layer in between each add. We did not find
significant improvement in performance using Local Emphasis. We obtained the a best mIoU of
94.0 using two (K=3,P=1,S=1) convolutions which is virtually the same at the original SegFormer
performance of 93.9.

We find that transformers can capture much fine details from features because of the multi-head
attention. Table 1 compares the performance metrics for all the models. Since the data was biased
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Figure 4: Qualitative results for each model in each spatial resolution.

towards PV03, in 2 U-Net didn’t perform well on lower resolution datasets like PV-01, but the
transformers based models achieved an mIoU of 95.104 and 94.9 (DPT and Segformer respectively).

5 Conclusion

Based on the dataset, we investigated the performance of transformer models compared to state of
the art CNN models for solar panel segmentation. Out of the models Segformer had a significantly
higher mIoU. Our experiments showcase SegFormer’s ability to capture multi-level features that
proved useful when dealing with the multi-resolution dataset. UNet and DeepLabV3+ performed
acceptably. DeepLab v3+ performed better for lower resolution images. Considering the speed, CNN
models would be of more practical use if the image is not of lower resolution. Thus urban planners/
government can use these techniques by feeding in the satellite images and conducting surveys to
improve solar panel campaigns reducing the reliance on fossil fuels and combating climate change.
Further research could include ways to boost the performance of transformer based models and apply
such techniques to similar questions of interest.
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